Generalized Bloch Vector and the Eigenvalues of a Density Matrix
نویسندگان
چکیده
We consider n-level quantum systems and show how the length of the generalized Bloch vector is related to the eigenvalues of the density matrix. We interpret the length of the generalized Bloch vector as a measure of how pure the quantum state is.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کامل6 Alternative representation of N × N density matrix
We use polarization operators known from quantum theory of angular momentum to expand the N ×N dimensional density operators. Thereby, we construct generalized Bloch vectors representing density matrices. We study their properties and derive positivity conditions for any N. We also apply the procedure to study Bloch vector space for a qubit and a qutrit.
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملSpectral Properties of Photonic Crystals: Bloch Waves and Band Gaps
The author of this dissertation studies the spectral properties of high-contrast photonic crystals, i.e. periodic electromagnetic waveguides made of two materials (a connected phase and included phase) whose electromagnetic material properties are in large contrast. A spectral analysis of 2nd-order divergence-form partial differential operators (with a coupling constant k) is provided. A result...
متن کاملThe Main Eigenvalues of the Undirected Power Graph of a Group
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
متن کامل